Bridgelea Primary School Calculation Policy

This calculation policy has been written to reflect the Concrete, Pictorial, Abstract (CPA) approach to teaching and learning in primary mathematics, this is captured in the Numicon Teaching Handbooks, the Long Term Plans and Bridgelea Maths Curriculum documentation. Wherever possible, children are taught to work with concrete resources alongside pictorial methods. In all lessons there should be examples of CPA embedded throughout for children to have experiences of working across all three.

Addition methods

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole Part whole model		Represent the cubes using dots.	4+3=7 Four and 3 are parts and the whole is seven. 4 + 3 = 7 10=6+4 3 Use the part-part whole diagram as shown above to move into the abstract.

Starting at the bigger number and counting on	Counting on using number lines using concrete resources.	A bar model to encourage counting on rather than counting all.	Start at the bigger number and count on in ones or in one jump to find the answer.
		Hank number lines	12 + 5 = 17 12 + 5 = 17 10 + 1 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2
	Cuisenaire rods		
		4 ~~~~; 00 + 00 = 000 00 + 00 = 000	4 5 6
Regrouping to make 10	Ten frames		Develop an understanding of equality. For example
			$6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$

	Start with the largest number and use the smaller	Use pictures of objects and regroup or partition the	6 + 5 = 11
	number to	smaller number to make up 10.	0 + 5 - 11
	make 10.	DATA DATA DE SOUCE	If I start at six, how many more do I need to make 10? How many more do I add on now?
		第日 日 6 + 5 = 11	An apple is 6 pence and a banana is 5p. How much money do I need to buy an apple and a banana?
	Use coins throughout		
Adding three single digits	6 + 1 + 4= Following on from making 10, make 10 with two of the digits if possible. Next, add the remaining digit.	Draw pictures to represent the three groups of objects to be added. Draw a final picture to show the groups combined to create a total.	Look for pairs of numbers that make 10 (if possible) and then add the remaining digit.
	•		4+7+6 = 10+7
			10 = 17

Adding tens/ones to ones	Continue to develop the understanding of partitioning and place value. 23+5=	Pictorially represent the base 10 or other concrete resources e.g lines for tens and dots for ones.	41+8 1+8 = 9 40+9=49
	Tens Ones II Cones	Tens Ones +4	$+\frac{2}{2}\frac{3}{4}$
Adding tens/ones to tens/ones Column method - no regrouping	24+12 = Add together the ones first and then add the tens. Use base 10 blocks, rods and shapes. Use coins to enhance.	Once secure with concrete resources and moving equipment practically, draw images to solve additions.	Written methods e.g. 24 + 12 = 24 + 12 Draw number lines, part-whole models, bar model etc.

Adding hundreds/tens/o nes to tens/ones Or hundreds/tens/o nes to hundreds/tens/o nes etc Column method – regrouping	When there are 10 ones in the ones column, we exchange for 1 ten. When there are 10 tens in the tens column, we exchange for 1 hundred.	Children represent the counters in a place value chart, circling when they make an exchange.	Formal methods:
	243.1 +368.1		Formal methods:

Subtraction

Objective	Concrete	Pictorial	Abstract
Taking away and removing objects from a whole	Use physical objects to show how obects can be taken away. Ten frames, Numicon, cubes, counters, beanbags etc could be used.	Draw the concrete resources or objects they are using and cross out the correct amount. The bar model can also be used.	
	5-3=2	5-3=2 00 → 00	5-3=2
Counting back	Using numberlines or tracks.	Represent what they see	Represent the calculation on a number line or track and show jumps. Encourage to use an empty
	6 - 2 = 4	pictorially.	number line.
	1 2 3 4 5 6 7 8 9 10	12345678910	

Part part whole model	Link to adition – use the part whole model to help explain the inverse between addition and subtraction.	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part part whole model.
			6 4
			13 - 7 = 6 -4 -3 $3 - 4 -3 -3 -3 -3 -3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5$
			Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.

Column method – no	Using Base 10	Represent method pictorially.	Column method or counting back.
regrouping	48 – 7 Use Base 10 or place value counters to make the bigger number and then take the smaller number away.	tens ones tens ones	4 8 - 7 4 1
	Tens Ones Tens Ones	Tens Ones Tens Ones Occorrection Occore	47 - 24 = 23 $-\frac{40 + 7}{20 + 4}$ $-\frac{20 + 3}{20 + 3}$
Column method - regrouping	Using Base 10 and having to exchange. 41 – 26	Represent the Base 10 pictorially, remembering to show the exchange.	Formal column method. Children must understand that when they

Multiplication strategies

Using number lines for repeated groups	Number line to show repeated groups. 3 x 4	Represent pictorially alongside a number line.	Abstract number line showing three jumps of four. 3 x 4 = 12
Partitioning	Cuisenaire rods may also be used. Partition to multiply using Numicon, Base 10 or Cuisenaire rods. 4×15 4×15	Represent the concrete manipulatives pictorially. $ \begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	Demonstrate the steps taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 20 = 60

Formal column method	Use place value counters or Base 10.	Represent the counter pictorially.	Children record in ways to show understanding.
	Tens Ones 3 x 23		
	It is important that the ones are multiplied first and the answer noted down before multiplying the tens.		3×23 $3 \times 20 = 60$
	pundrets ; tens ; ones	Hundreds tens ones Hundreds tens Ones	$3 \times 3 = 9$ 20 3 $60 + 9 = 69$
	mudrets ters ories		23
			$\frac{x \ 3}{69}$ 6 x 23 =
			<u></u> 23
			<u>× 6</u>
			138
			1 1
			When starting to multiply by 3 digit x 3 digit and 4 digit by 2 digit etc, they should be confident with the abstract.

			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
--	--	--	---

Division

Objective	Concrete	Pictorial	Abstract
Sharing	Sharing using a range of concrete objects.	Represent the sharing pictorially.	6÷2=3
	6÷2	6-2	Children should also be encouraged to use 2 times table facts in this case.
Repeated subtraction/	Using Cuisenaire rods above a ruler.	Represent repeated subtraction pictorially.	Abstract number ine to represent the equal groups that
grouping		-5 -5 -5 -5 5 5 5 5 5 25	have been subtracted.

Division with	Link division to multiplication by creating an array and	Draw an array and use lines to split the array into groups	Find the inverse of the multiplication and division
Arrays	thinking about the calculations that can be created.	to make multiplication and division calculations.	sentences by creating four linking calculations.
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 x 4 = 28 4 x 7 = 28 28 ÷ 7 = 4 28 ÷ 4 = 7
	Eg 15 ÷ 3 = 5 5 x 3 = 15 15 ÷ 5 = 3 3 x 5 = 15		
Division with remainders	2 digit divided by 1 digit using lollipop sticks, Cuisenaire rods etc.	Represent the lollipop sticks pictorially. Draw dots and group them to divide an amount and clearly show a remainder.	13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their
	Divide objects between groups and see how many are left over. $23 \div 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	23-10	times table facts; they could also represent repeated addition on a number line.
			$^{-4}$ $^{-4}$ $^{-4}$ $^{-4}$
		23-10=	6 1 13

