Bridgelea Primary School Calculation Policy

This calculation policy has been written to reflect the Concrete, Pictorial, Abstract (CPA) approach to teaching and learning in primary mathematics, this is captured in the Numicon Teaching Handbooks, the Long Term Plans and Bridgelea Maths Curriculum documentation. Wherever possible, children are taught to work with concrete resources alongside pictorial methods. In all lessons there should be examples of CPA embedded throughout for children to have experiences of working across all three.

Addition methods

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole Part whole model		Represent the cubes using dots.	$4+3=7$ Four and 3 are parts and the whole is seven.

Bridgelea Primary School

Starting at the bigger number and counting on	Counting on using number lines using concrete resources. Cuisenaire rods \square	A bar model to encourage counting on rather than counting all. Blank number lines	Start at the bigger number and count on in ones or in one jump to find the answer. $12+5=17$ The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10	Ten frames		Develop an understanding of equality. For example... $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

	Start with the largest number and use the smaller number to make 10. Use coins throughout	Use pictures of objects and regroup or partition the smaller number to make up 10 .	$6+5=11$ If I start at six, how many more do I need to make 10 ? How many more do I add on now? An apple is 6 pence and a banana is 5 p. How much money do I need to buy an apple and a banana?
Adding three single digits	$6+1+4=$ Following on from making 10, make 10 with two of the digits if possible. Next, add the remaining digit.	Draw pictures to represent the three groups of objects to be added. Draw a final picture to show the groups combined to create a total. $\underset{7}{\vdots}+\underset{3}{ }+\ldots=10$	Look for pairs of numbers that make 10 (if possible) and then add the remaining digit. $\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$

Bridgelea Primary School

Bridgelea Primary School

Adding tens/ones to tens/ones Column method regrouping	Continue to develop the understanding of partitioning and place value. 36+25	Represent the base 10 in a place value chart.	Look for ways to make 10. $\begin{aligned} & 30+20=50 \\ & 5+5=10 \\ & 50+10+1=61 \\ & \quad 36 \end{aligned}$ Formal method: $+25$
	122+146		ods:
		Hiundreds Tens Cous \square \square \square	

Bridgelea Primary School

Adding hundreds/tens/o nes to tens/ones Or hundreds/tens/o nes to hundreds/tens/o nes etc Column method regrouping	When there are 10 ones in the ones column, we exchange for 1 ten. When there are 10 tens in the tens column, we exchange for 1 hundred. Make both numbers on a place value grid.	Children represent the counters in a place value chart, circling when they make an exchange.	Formal methods: You may start by partitioning the numbers before moving on to clearly show the exchange below the addition.
	$\begin{array}{r} 243.1 \\ +368.1 \end{array}$		Formal methods:

Subtraction

Objective	Concrete	Pictorial	Abstract
Taking away and removing objects from a whole	Use physical objects to show how obects can be taken away. Ten frames, Numicon, cubes, counters, beanbags etc could be used.	Draw the concrete resources or objects they are using and cross out the correct amount. The bar model can also be used.	$5-\sum-2$
Counting back	Using numberlines or tracks. $6-2=4$	Represent what they see pictorially.	Represent the calculation on a number line or track and show jumps. Encourage to use an empty number line.

	Use counters and move them away from the group as you take them away, counting backwards as you go.	$\begin{aligned} & 9-4=5 \\ & 0 \\ & 0 \end{aligned} \begin{aligned} & 9 \\ & 0 \end{aligned} 0-\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2 & 2 \\ 2 & 2 \end{array}\right]$	This can progress to counting back using 2 digit numbers. $9-4=5$
Finding the difference	Use any concrete resources such as Numicon, cubes, Cuisenaire rods or other objects. Calculate the difference between 8 and 5 .	Draw the cubes or other resources used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square

Part part whole model	Link to adition - use the part whole model to help explain the inverse between addition and subtraction.	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part part whole model. $13-7=$ [3] \square Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.

Multiplication strategies

Objective	Concrete	Pictorial	Abstract
Repeated grouping/ repeated addition	$4+4+4$ There are 3 equal groups with 4 in each group.	Represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$ Write addition sentences to describe objects and pictures.

Using number lines for repeated groups	Number line to show repeated groups. 3×4 Cuisenaire rods may also be used.	Represent pictorially alongside a number line.	Abstract number line showing three jumps of four. $3 \times 4=12$
Partitioning	Partition to multiply using Numicon, Base 10 or Cuisenaire rods. 4×15	Represent the concrete manipulatives pictorially.	Demonstrate the steps taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used

Bridgelea Primary School
Formal column method

Bridgelea Primary School

Division

Objective	Concrete	Pictorial	Abstract
Sharing	Sharing using a range of concrete objects. $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$ Children should also be encouraged to use 2 times table facts in this case.
Repeated subtraction/ grouping	Using Cuisenaire rods above a ruler.	Represent repeated subtraction pictorially.	Abstract number ine to represent the equal groups that have been subtracted. $25 \div 5=$

Bridgelea Primary School

Division with Arrays	Link division to multiplication by creating an array and thinking about the calculations that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division calculations.	Find the inverse of the multiplication and division sentences by creating four linking calculations. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with remainders	2 digit divided by 1 digit using lollipop sticks, Cuisenaire rods etc. Divide objects between groups and see how many are left over.	Represent the lollipop sticks pictorially. Draw dots and group them to divide an amount and clearly show a remainder.	$13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. ' 3 groups of 4 , with 1 left over'

Bridgelea Primary School
Division using dienes

